Normalisation 2

Chapter 4.2 V3.0

Copyright @ Napier University

Dr Gordon Russell

Normalisation 2

- Overview
 - normalise a relation to Boyce Codd Normal Form (BCNF)
 - An example

Boyce-Codd Normal Form (BCNF)

- When a relation has more than one candidate key, anomalies may result even though the relation is in 3NF.
- 3NF does not deal satisfactorily with the case of a relation with overlapping candidate keys
 - i.e. composite candidate keys with at least one attribute in common.
- BCNF is based on the concept of a determinant.
 - A determinant is any attribute (simple or composite) on which some other attribute is fully functionally dependent.
- A relation is in BCNF is, and only if, every determinant is a candidate key.

The theory

Consider the following relation and determinants.

```
R(<u>a,b</u>,c,d)
a,c -> b,d
a,d -> b
```

- To be in BCNF, all valid determinants must be a candidate key. In the relation R, a,c->b,d is the determinate used, so the first determinate is fine.
- a,d->b suggests that a,d can be the primary key, which would determine b. However this would not determine c. This is not a candidate key, and thus R is not in BCNF.

Example 1

Patient No	Patient Name	Appointment Id	Time	Doctor
			75062	
1	John	0	09:00	Zorro
2	Kerr	0	09:00	Killer
3	Adam	1	10:00	Zorro
4	Robert	0	13:00	Killer
5	Zane	1	14:00	Zorro

Two possible keys

- DB(Patno,PatName,appNo,time,doctor)
- Determinants:
 - Patno -> PatName
 - Patno,appNo -> Time,doctor
 - Time -> appNo
- Two options for 1NF primary key selection:
 - DB(<u>Patno</u>, PatName, <u>appNo</u>, time, doctor) (example 1a)
 - DB(Patno, PatName, appNo, time, doctor) (example 1b)

Example 1a

- DB(<u>Patno</u>, PatName, <u>appNo</u>, time, doctor)
- No repeating groups, so in 1NF
- 2NF eliminate partial key dependencies:
 - DB(<u>Patno,appNo,time,doctor</u>)
 - R1(Patno,PatName)
- 3NF no transient dependences so in 3NF
- Now try BCNF.

BCNF Every determinant is a candidate key

DB(<u>Patno,appNo</u>,time,doctor) R1(<u>Patno</u>,PatName)

- Is determinant a candidate key?
 - Patno -> PatName
 Patno is present in DB, but not PatName, so irrelevant.

Continued...

DB(<u>Patno,appNo,time,doctor</u>) R1(<u>Patno,PatName</u>)

- Patno,appNo -> Time,doctor
 All LHS and RHS present so relevant. Is this a candidate key? Patno,appNo IS the key, so this is a candidate key.
- Time -> appNo
 Time is present, and so is appNo, so relevant. Is this a candidate key? If it was then we could rewrite DB as:
 DB(Patno,appNo,time,doctor)
 This will not work, so not BCNF.

Rewrite to BCNF

- DB(<u>Patno,appNo,time,doctor</u>) R1(<u>Patno,PatName</u>)
- BCNF: rewrite to DB(<u>Patno,time</u>,doctor) R1(<u>Patno</u>,PatName) R2(<u>time</u>,appNo)
- time is enough to work out the appointment number of a patient. Now BCNF is satisfied, and the final relations shown are in BCNF

Example 1b

- DB(<u>Patno</u>, PatName, appNo, <u>time</u>, doctor)
- No repeating groups, so in 1NF
- 2NF eliminate partial key dependencies:
 - DB(<u>Patno,time</u>,doctor)
 - R1(Patno,PatName)
 - R2(time,appNo)
- 3NF no transient dependences so in 3NF
- Now try BCNF.

BCNF Every determinant is a candidate key

DB(Patno,time,doctor)

R1(Patno, PatName)

R2(time,appNo)

- Is determinant a candidate key?
 - Patno -> PatName
 Patno is present in DB, but not PatName, irrelevant.
 - Patno,appNo -> Time,doctor
 Not all LHS present so not relevant
 - Time -> appNo
 Time is present, but not appNo, so not relevant.
 - Relations are in BCNF.

Summary - Example 1

This example has demonstrated three things:

- BCNF is stronger than 3NF, relations that are in 3NF are not necessarily inBCNF
- BCNF is needed in certain situations to obtain full understanding of the data model
- there are several routes to take to arrive at the same set of relations in BCNF.
 - Unfortunately there are no rules as to which route will be the easiest one to take.

Example 2

Grade_report(StudNo,StudName,(Major,Adviser, (CourseNo,Ctitle,InstrucName,InstructLocn,Grade)))

- Functional dependencies
 - StudNo -> StudName
 - CourseNo -> Ctitle,InstrucName
 - InstrucName -> InstrucLocn
 - StudNo,CourseNo,Major -> Grade
 - StudNo,Major -> Advisor
 - Advisor -> Major

- 1NF Remove repeating groups
 - Student(<u>StudNo</u>,StudName)
 - StudMajor(<u>StudNo,Major</u>,Advisor)
 - StudCourse(<u>StudNo,Major,CourseNo,</u>
 Ctitle,InstrucName,InstructLocn,Grade)

- 2NF Remove partial key dependencies Student(<u>StudNo</u>,StudName) StudMajor(<u>StudNo,Major</u>,Advisor) StudCourse(<u>StudNo,Major</u>,CourseNo,Grade) Course(CourseNo,Ctitle,InstrucName,InstructLocn)

- 2NF
 Student(<u>StudNo</u>,StudName)
 StudMajor(<u>StudNo,Major</u>,Advisor)
 StudCourse(<u>StudNo,Major</u>,CourseNo,Grade)
 Course(<u>CourseNo</u>,Ctitle,InstrucName,InstructLocn)
- 3NF Remove transitive dependencies Student(<u>StudNo</u>,StudName) StudMajor(<u>StudNo</u>,Major,Advisor) StudCourse(<u>StudNo</u>,Major,CourseNo</u>,Grade) Course(<u>CourseNo</u>,Ctitle,InstrucName) Instructor(<u>InstructName</u>,InstructLocn)

- BCNF Every determinant is a candidate key
 - Student : only determinant is StudNo
 - StudCourse: only determinant is StudNo, Major
 - Course: only determinant is CourseNo
 - Instructor: only determinant is InstrucName
 - StudMajor: the determinants are
 - StudNo,Major, or
 - Advisor

Only StudNo, Major is a candidate key.

Example 2: BCNF

BCNF

StudCourse(StudNo,Major,CourseNo,Grade)
Course(CourseNo,Ctitle,InstrucName)
Instructor(InstructName,InstructLocn)
StudMajor(StudNo,Advisor)
Adviser(Adviser,Major)

Problems BCNF overcomes

STUDENT	MAJOR	ADVISOR
123	PHYSICS	EINSTEIN
123	MUSIC	MOZART
456	BIOLOGY	DARWIN
789	PHYSICS	BOHR
999	PHYSICS	EINSTEIN

- If the record for student 456 is deleted we lose not only information on student 456 but also the fact that DARWIN advises in BIOLOGY
- we cannot record the fact that WATSON can advise on COMPUTING until we have a student majoring in COMPUTING to whom we can assign WATSON as an advisor.

Split into two tables

In BCNF we have two tables

<u>STUDENT</u>	ADVISOR
123	EINSTEIN
123	MOZART
456	DARWIN
789	BOHR
999	EINSTEIN

ADVISOR	MAJOR
EINSTEIN	PHYSICS
MOZART	MUSIC
DARWIN	BIOLOGY
BOHR	PHYSICS

Returning to the ER Model

- Now that we have reached the end of the normalisation process, you must go back and compare the resulting relations with the original ER model
 - You may need to alter it to take account of the changes that have occurred during the normalisation process Your ER diagram should always be a prefect reflection of the model you are going to implement in the database, so keep it up to date!
 - The changes required depends on how good the ER model was at first!

Video Library Example

- A video library allows customers to borrow videos.
- Assume that there is only 1 of each video.
- We are told that:

```
video(title,director,serial)
customer(name,addr,memberno)
hire(memberno,serial,date)
title->director,serial
serial->title
serial->director
name,addr -> memberno
memberno -> name,addr
serial,date -> memberno
```


What NF is this?

- No repeating groups therefore at least 1NF
- 2NF A Composite key exists: hire(memberno, serial, date)
 - Can memberno be found with just serial or date?
 - NO, therefore the relations are already in 2NF.
- 3NF?

Test for 3NF

- video(<u>title</u>,director,serial)
 - title->director,serial
 - serial->director
- Director can be derived using serial, and serial and director are both non keys, so therefore this is a transitive or non-key dependency.
- Rewrite video...

Rewrite for 3NF

- video(<u>title</u>,director,serial)
 - title->director, serial
 - serial->director
- Becomes:
- video(<u>title</u>,serial)
- serial(<u>serial</u>,director)

Check BCNF

- Is every determinant a candidate key?
- video(<u>title</u>,serial) Determinants are:
 - title->director, serial
 Candidate key
 - serial->titleCandidate key
 - video in BCNF
- serial(serial, director) Determinants are:
 - serial->directorCandidate key
 - serial in BCNF

- customer(name,addr,<u>memberno</u>) Determinants are:
 - name,addr -> membernoCandidate key
 - memberno -> name,addrCandidate key
 - customer in BCNF
- hire(memberno, serial, date) Determinants are:
 - serial,date -> membernoCandidate key
 - hire in BCNF
- Therefore the relations are also now in BCNF.

